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This article describes a method for producing improved mapping of radio sources from
VLBI data. The method described here is more direct than existing Fourier methods,
is often more accurate, and runs at least as fast. The visibility data is modeled here, as in
existing methods, as a function of the unknown brightness distribution and the unknown
antenna gains and phases. We want to choose these unknowns so that the resulting func-
tion values are as near as possible to the observed values. [f we use the RMS deviation to
measure the closeness of this fit to the observed values, we are led to the problem of
minimizing a certain function of all the unknown parameters. This minimization problem
cannot be solved directly, but it can be attacked by iterative methods which we show
converge automatically to the minimum with no user intervention. The resulting bright-
ness distribution will furnish the best fit to the data among all brightness distributions of

given resolution.

. Introduction

This article describes a method for producing improved
mapping of radio sources from VLBI data. The use of VLBI
data has led to high resolution maps of radio sources in the
sky [Refs. 1-4]. The data provide values of the visibility func-
tion, which is the Fourier transform of the brightness distri-
bution. The problem of finding the unknown brightness dis-
tribution can accordingly be expressed as the problem of
finding an inverse Fourier transform. The methods currently
used depend on approximate inversion methods for a Fourier
transform which is known on an irregularly spaced set of
points.

An additional complication is that the signal received at
each antenna can have an unknown gain and phase offset,
depending on conditions at this antenna as well as on atmo-

spheric conditions. This introduces unknown multiplicative
inverting the Fourier transform. Iterative methods have been
developed for this which use an assumed map to recalibrate
the data, get a new map from these data by Fourier inversion,
then repeat the procedure starting from the new map. These
iterative methods require considerable user interaction as well
as computer time. They are also biased in favor of certain
types of brightness distributions in the resulting map.

The method described in this article is more direct than
existing Fourier methods, is often more accurate, and runs at
least as fast. The visibility data are modeled here, as in exist-
ing methods, as a function of the unknown brightness distri-
bution and the unknown antenna gains and phases. We want to
choose these unknowns so that the resulting function values
are as near as possible to the observed values. If we use the
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RMS deviation to measure the closeness of this fit to the
observed values, we are led to the problem of minimizing a
certain function of all the unknown parameters. This minimi-
zation problem cannot be solved directly, but it can be attacked
by iterative methods which converge automatically to the
minimum with no user intervention. The resulting brightness
distribution will furnish the best fit to the data among all
brightness distributions of given resolution.

Il. The Method

Preprocessing of the data, which we are not concerned with
here, furnishes time averages of the visibility function over
intervals on the order of several seconds to a minute, together
with estimates of standard deviation due to noise. We get a
set of values, E"), for the antenna pair p, ¢ and the n'P? time
interval. For a given value of s, only some of the possible p,
q pairs may occur, either because the source is not visible from
all antennas, or because some data were lost.

Each data value, E™) is modeled by a function, F( n) of
the unknown brightness distribution, / , and the un nown
gains, A, A with noise added. Themform of F(’;) is given
in Appendix A. Using the standard deviations, 0(” from the
preprocessing, we set up the function

xtg [ )
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Each F( is linear in the /,,’s and contains the product 4 {™
4( ), where the bar denotes a complex conjugate. An iterative
method of minimizing Q is used which repeatsstep (1) followed

by step (2):
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(1) Minimize Q by varying the 7 ’s, holding the A;”)’s
fixed.

(2) Minimize Q by varying the A;")’s, holding the /, ’s
fixed.

The nature of these steps is quite different. In (1), we want
to solve a system of simultaneous linear equations in a large
number of unknowns. In (2), this linearity is lost, but the
problem breaks up into the minimization of each Q, separately,
which only involves a small number of variables.

As this iterative procedure is carried out, the value of @
always decreases, and the unknowns approach values for which
no further decrease is possible. Hence the procedure must
converge.

lIl. Results and Conclusions

The method was applied to two sets of real data and one
set of simulated data. The two real data sets are based on
observations in Dec. 1982 at 6 cm. The resulting maps are
shown in Figs. 1 and 2. Source III is a simulated source con-
sisting of two point sources convolved with a circularly sym-
metric Gaussian distribution, with 1% noise added. The output
map is shown in Fig. 3.

The computer time needed for each source on the Caltech
computer “PHOBOS” was 10-15 minutes, which compares
favorably with the time for conventional methods. This is
possible because the new method can give good maps with a
coarser grid than other methods. This is shown by Fig. 4,
which displays the map of Source I derived in the usual way
with a fine grid, and the effect on this map if a 32 X 32 grid is
used for the final inversion and “CLEANing” (“CLEAN” is a
Caltech program).

The method described here has been shown to be a prac-
tical alternative to existing methods. It can construct a map
without any user intervention. The resulting map is free of the
biases introduced by interpolation before inversion and by the
CLEAN program.
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Fig. 1. Source 1807+698
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Fig. 2. Source 2021+614
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Appendix A

Derivation of the Cost Function

In determining the brightness distribution of a radio source,
preliminary reduction of VLBI data yields corrupted values of
the visibility function

V(u,v) =f] I(x,y) exp [2mi(ux +vy)]dxdy (Al)

[Refs. A-1 and A-2]. Here /(x,p) is the brightness distribution,
expressed as a function of rectangular coordinates x,y in the
tangent plane to the celestial sphere at the source location.
The visibility function V(w,v) is its two-dimensional Fourier
transform.

The core of the problem of finding the brightness distri-
bution is the inversion of this transform. This is complicated
by the fact that only values of V(u,v) on a restricted, irregu-
larly spaced set of points (¢,v) are contained in the data.

Suppose there are NS antennas. Then the quantitiesu_, v
are associated with the pth antenna, 1 < p < NS, as follows.
Let X, be the vector from the center of the earth to the
p'" antenna, and A be the wavelength of the radiation received.
Let K be the factor by which values of x,y must be multi-
plied to convert to radians (typically, x and y are measured in
milliarcseconds, and K = 7-107%/648). Then u,v, are the
components of KXp/)\ parallel to the x and y axes.

The only values of V(u,v) which enter into the data are

V. =Vu -u,
P q

<p,q <NS.
va 1<pgs<NS

v, - vq),

These quantities are functions of time, since u,, v change due
to the rotation of the earth. The data are averaged over time
intervals sufficiently small that there is no significant variation
“of u pVp OVEr an interval. This reduces the set of visibilities
to a f1n1te set of values V(';) where 7 is the index of the time
interval. For a given value of n, some pairs p,q may not occur,
because the source was not visible from certain antennas at

that time, or because some data were lost.

To determine /(x,y) numerically, it is approximated by a
series of delta functions on a rectangular grid in a restricted
region of the plane,

ME
Z [ 8(x-x,)8(-»,).

m=1

I(xy) =

Then equation (A1) is reduced to
(A2)

where

n) = i () = () (n) = ,(m)
Cf}q’m exp[2ni {(up U )x, (vp v, )yn}] .
Unfortunately, there are additional complications in the
problem. Each antenna has a gain, M, and a phase offset,
¢_, which are unknown functions of time. The effects of noise
must also be taken into consideration. If 4" = M, exp(z’d)p),
then the quantities actually given by the data are
ER) = g1 g(n) pAn) 4 (n) (A3)
pq p a 'pqg  pq

where the bar denotes a complex conjugate, and nlgg) is the

contribution of the noise [Ref. 3).

Our problem is to determine the values/ ,ngen the quan-

tities E;") If we start with assumed values A(") 1 , We can
construct
MF
=3 T,
rq pq.m “m’
m=1
and
F = 200 200 gy (A4)
»4q p g pq

The noise terms #"") in (A3) are assumed to be unknown, so a
criterion for the goodness of the assumed values is how close
the FU™) are to the EI(:;). The averaging process which furnishes
the data £ also provides estimates, op((;’), of the standard
deviation ot the noise. Thus we are led to consider the cost

function
S5 /W
pa
n 2.4

Minimization of Q gives the least-squares fit of the F(") to the

E")
pa

m - g

va (AS)
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Appendix B

Iterative Minimization of the Cost Function

As stated in Section 1II, this minimization is accomplished
by iterating two steps.

. Variation of ip,

Let z,, = I,. Then, in its dependence on the z,,, Q is
a positive definite quadratic form

MF MF
Q- Z: Boynz~2 ). D,z *R. (B)
m, k=1 m=1
where
B . = Real ZZ A fm|? ot c<">/<n>2
mk P q pq,m “pq,k/ "pq (’

n pq

(o]
0

Real z:zAm 1@ o o [ g’
m p q rq.m " pq rq ’
nor.q

and

™
™

This quadratic form is minimized by the values of the z  at
which all the partial derivatives with respect to the z, are zero:

MFE
1 <m<MF (B2)
k=1

Direct solution of this system is not practical because of
the large number of unknowns. An iterative method which
converges to the solution is the Gauss-Seidel method [Ref. B-1],
which consists of the following: Start with any assumed values
of the unknowns. For m = 1 to MF, make the replacement

Zm < (Dm - Z Bmkzk)/Bmm . (B3)
k#m

When applied repeatedly, this procedure is easily shown to
converge to the minimum of @ (for fixed A(")) The step (B3)
gives the minimum of Q when only the one unknown z,_is
allowed to vary.

Il. Variation of the Ap(n)
Here each of the subsums of (AS),

0, =D

p.q

) _ E(")
pq

/o(")2 ,
Pq

involves a separate set of variables, so they can be minimized
separately. Leta = A’f;”). Then

= 2 - a
0, Z(qulapaqi 2Hpqapaq)+Rn, (B4)

p.q
where
G =l'7(") 2/,,(n)2
pq rq rqg °’
H = V(")E(") (n)
ra pq %q
and
R =Z'E(") /(n)
n

This function is minimized by the gradient method [Ref. B-1].
Let

la 1> a +H a ).
Pq q P qpr q

aQn
y T =2 2
p q

For v > 0, the quantities a, + vb, are directed away from a,
along the negative gradient of @, (in the 2+NS-dimensional
space of the real and imaginary parts of the a,’s). The iterative
step here is to replace a, by a, + vb, in the expression (B4)
for Q,,, then choose v to minimize the resulting fourth degree

207 -



polynomial in v. Using the minimizing value, a
the new value of a,.

p t pr gives

In Step (2), as in (1), convergence is guaranteed since each
step decreases Q. More generally, the steps of (1) and (2) can
be intermingled in any systematic iterative procedure which

varies each unknown infinitely often, and Q will approach the
minimum. It is advantageous, however, to carry out Steps (1)
and (2) separately to the point where the minimums of the
separated problems are approached, because this reduces the
amount of time spent in computing the coefficients in the
formulas (B1) and (B4).
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Appendix C

Description of the Computer Programs

The method described here was implemented on the VAX
computer PHOBOS in the Caltech Astronomy department. A
series of three programs is used (see Fig. 5):

(1) The program INDATA reads the data from an existing
data file in the MERGE format currently used at
Caltech. This data is transferred into new files, with
some conversion, and some of the quantities to be used
in the minimization process are pre-computed.

(2) The program VLFIT carries out the minimization
procedure of Section II.

(3) The program MODOUT reads the file output by
VLFIT and builds a new file MOD.DAT which can be
used by the Caltech program MODPLOT to draw a
contour map of the source.

Il. Program INDATA

This program reads an input file prepared by other exist-
ing programs. The first section reads a collection of header
records, saving some of the information and converting some
to a more convenient form. This information includes the
astronomical location of the source (right ascension and
declination), the starting time of the data, and names and
locations of all the antennas. The time origin is chosen to be
the start of the day on which the data begins, in Greenwich
mean time. The right ascension is converted to PLOQ, the
longitude of the source at time @. The vector from the earth’s
center to the p'™ antenna, (STX(p), STY(p), STZ(p)), is
rescaled so that its components in the xy-plane at the source
are the quantities 2nup, 27rvp of Appendix A.

Next the data section of the file is read. The data points
are stored sequentially in an array of length /P. The antenna
pair (/J) is denoted by one index L = L(ZJ) which is related
to [ and J by the arrays //B, JIB set up in the program. We
build the arrays

T(N), N=1,...,NT
and
E(K), SGM(K), LP(K), KT(K), K=1,...,IP,

where T(V) is the time of the n'" time interval in minutes, and

: = p(N)
EK) = B0V,

2
SGM(K) = ¢¥)
rq

LP(K) = L(p.q),
with
KT(K) = N, in the n*" time interval.

Data which contain no useful information are eliminated.

Next the program reads two lines of input data which
specify parameters of the map. These are:

(1) NX NY: Number of grid points in the x and y directions.

(2) XL,YL: Half-width of the map in x and y directions, in
milliarcseconds.

The total number of real unknowns is now known to be
2NS*NT + MF (where MF = NX-NY). The number of real
conditions in the data is 2+/P. The ratio 2IP/(2NS-NT+MF),
the redundancy, is evaluated here. If this value is less than 1,
there are not enough conditions to determine the unknowns.
If this happens, we may still get a good map, but there are
other solutions to the minimum problem.

The next section of the program computes the quantities
2nup, 2nv, for each time interval, and forms the auxiliary
complex arrays CLO(p,N), CLX(p,N), CLY(p,N). These are
used in VLFIT to generate C;’;)'m as follows: The x and y
values at the grid points are

X, =X, +({ -1)DX,

” I SI<SNX,

Yy =¥, tW-DDY, 1<J<NY,
where M = J+ (I - 1)NY. If we put
CL(p,MN) = CLOp,N) * CLX(p,NY~ - CLY(p,NY !,

then

)

™ = CLEMN) - CL@MN).

Finally, the brightness array 4/(M) and the complex gain
array AP(I,N) are initialized with values 1, and all the arrays
needed by VLFIT are written in files.
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ll. Program VLFIT
This program reads the files prepared by INDATA, and two

other lines of input: (i) NAP and NAI, and (ii) DSC (see Fig. 6).

The gains are not adjusted if NAP = 0. The brightnesses are
only rescaled if NAI = 0. DSC is a parameter used in image
enhancement. For DSC > 0, the peaks of the brightness dis-
tribution are sharpened twice during the iterative solution for
the brightnesses A/(M).

First the brightnesses are rescaled so that for the given gains
and shape of the brightness distribution, the fit to the data is
as good as possible.

Next (if NAP#0) step (2) of Appendix B is applied, with
twelve iterations in each time interval.

Next (if NAI#0) step (1) is applied. The values of AJ/(M),
M=1 to MF, are adjusted fifty times. After the 6'™ time and
the 26'" time, image enhancement is applied, by replacing
each AI(M) by
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AI(M) - DSC - (max (Al) -~ AI(M))

and then replacing any negative values by zero.

Finally, an output file of values of gains and brightnesses
is written, in the same format as the input file. This allows
the application of VLFIT any number of times, using each
output file as input the next time.

ll. Program MODOUT

This program converts the output of VLFIT into a form
useable by the program MODPLOT. The brightness distribu-
tion is characterized by a series of components, in this case
delta-functions at the grid points, whose position is given in
polar coordinates. These are listed in order of decreasing
strength, terminating after at most MAXC comporents, where
MAXC is a number read as input by the program.



